Actionable Data Analytics
Join Our Email List for Data News Sent to Your Inbox

Azure Synapse Analytics Notebooks

Let’s explore some of the key features available in Azure Synapse Analytics Notebooks. In this blog post, you’ll learn how to start using Notebooks. 

Some of the key benefits of using Notebooks are: 

  • Performing advanced data analytics workloads, including streaming using Notebooks and Spark pools 
  • Timely actionable insights 
  • Analyzing unstructured data, including Parquet or Json files 
  • Combining code with explanations 

The following languages are available in Notebooks: 

  • PySpark (Python) 
  • Spark (Scala) 
  • .NET Spark (C#)  
  • Spark SQL 
Languages in Notebooks

Creating a Notebook 

To start, you can create a new Notebook in the Manage Hub. 

Creating a Notebook

Or you can simply query some files from the Data Hub. 

This second option is going to prepare some code for you to start consuming data. 

Next, if your Spark pool isn’t running, the first time will take some time to start. Remember that you are only charged for the usage time of the Spark pool. 

At the notebook level, you have the following options: 

I’d like to highlight that the Export option will generate a .ipynb file that you can use across platforms if required. 

Additionally, you can also combine code with explanations. 

Finally, to execute the Notebook, you must attach it to your Apache Spark Pool. 


Within each cell, you have the following options: 


You can combine the 4 languages using temporal tables. All of them will execute in the Spark context.  Use the following magic commands to change languages. 

  • PySpark use %%pyspark 
  • Spark use %%spark  
  • .NET Spark use %%csharp 
  • Spark SQL use %%sql 

Tutorial  – Combine 4 Languages in One Notebook

In the following tutorial, let’s use the “SalesLT_Address_20200709.parquet” file I created as part of the tutorial in my previous blog post.

Today’s tutorial will cover how you can combine the 4 languages in one Notebook. 

You can also download the sample file and notebook file from here



Address ='abfss://[email protected]/Demos/AdventureWorks/2020/202007/20200709/SalesLT_Address_20200709.parquet', format='parquet') 

df = sqlContext.sql("SELECT StateProvince, CountryRegion,  count(*) Customers FROM Address group by StateProvince, CountryRegion") 


Spark SQL 



AS (select  CountryRegion as Country, sum(Customers) as Customers  

from CustomersByState group by CountryRegion) 

select * from CustomersByCountry 

Spark Scala 


val ScalaTable = spark.sql("select Country from CustomersByCountry order by Customers asc limit 1") 


Spark Scala

.NET Spark (C#) 


SparkSession spark = SparkSession 


                .AppName("SQL basic example using .NET for Apache Spark") 



DataFrame sqlDf = spark.Sql("SELECT * FROM CountryWithLessCustomers"); 



To sum up, in today’s post we haven’t spent much time looking at all the benefits of using different languages, but you’ve seen how easy it is to get started in Azure Synapse Analytics Notebooks. It’s a very similar experience to using Azure Jupyter Notebooks or Azure Databricks. 

Final Thoughts 

All things considered, Notebooks have been around for a few years. Having them available in Azure Synapse Analytics will significantly increase their popularity among data scientists and data analysts.  

What’s Next?

Looking forward, I’ll continue introducing new features that are already available in Azure Synapse Analytics Workspaces. Please leave me a comment if you have any questions! 

Check out these other blog posts

comment [ 1 ]
No tags 0
1 Response
  • Lakshmi
    23 . 06 . 2022

    Can we run multiple cells in parallel in a synpase notebook

Do you want to leave a comment?

Your email address will not be published. Required fields are marked *

For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

I agree to these terms.